Со и со2

Содержание

Варианты подачи газа

При обычном уличном выращивании или в пленочных парниках растения получают углекислый газ из атмосферы. В капитальных и промышленных парниках для насыщения им воздуха используют различные методы и приспособления.

Технические средства в промышленных теплицах

В крупных фермерских хозяйствах часто используют отходящий газ котельных (дым). Перед тем, как подавать газ в теплицы, его необходимо очистить и остудить, только после этого он подается к грядкам по газопроводной системе. Оборудование для его отбора включает конденсор с встроенным вентилятором, дозатор и газопроводные распределительные сети.

Распределительные сети – это полиэтиленовые рукава с перфорацией, протянутые вдоль грядок. Такая система должна иметь аппаратуру, контролирующую состав газа на предмет содержания примесей, которые могут угрожать здоровью людей, работающих в теплицах.

Общая стоимость такого оборудования достаточно высока, вопрос в том, окупятся ли расходы на нее.

Более простым решением будет использование твердой углекислоты – сухого льда, который можно разложить в теплицах.

Небольшие фермерские или домашние теплицы

Для обеспечения газом небольших теплиц используют газогенераторы, выделяющие углекислый газ из воздуха и закачивающие его внутрь парника. Он производит до 0,5 кг газа в час. Его достоинства:

  • не зависит от внешних источников;
  • генерирует абсолютно чистую углекислоту в нужных объемах;
  • имеет сенсорный дозатор;
  • прост и недорог в обслуживании (замена фильтров – 1 раз в полгода);
  • не влияет на температуру и влажность в теплице.

Газовые баллоны

Использование сжиженного газа в баллонах также возможно. Но этот способ потребует дополнительного оборудования для подогрева и регулирования подачи газа, то есть снижения давления. Только через такие устройства возможно безопасное для растений поступление газа в теплицу.

Биологические средства

Если хозяйство включает животноводческую ферму, можно наладить воздухообмен помещения теплицы и животноводческого помещения. Животные выдыхают углекислый газ, который так необходим растениям. Теплицу можно построить так, чтобы два помещения имели общую стену.

В ней делается два отверстия – наверху и внизу. На них устанавливаются маломощные (во избежание сквозняка) вентиляторы. В итоге животные получают кислород от растений, а те углекислый газ.

Недостаток этого способа в том, что достичь необходимого баланса можно только опытным путем: куда пристроить теплицу к свинарнику или крольчатнику? И как регулировать поступающее количество газа от разных животных.

В теплице на приусадебном участке используют навоз, который, разлагаясь, выделяет углекислый газ в количестве, достаточном для его обитателей – огурцов, томатов и прочих культур.

Если поставить в парнике бочку с водой и положить в нее десяток крупных стеблей крапивы, можно получить еще один естественный источник углекислого газа. Воду нужно периодически доливать. Этот способ имеет один недостаток – довольно неприятный запах разлагающейся крапивы.

Еще один источник углекислого газа – спиртовое брожение. Некоторые садоводы ставят между растениями емкости с брагой – вода, дрожжи и сахар. Но этот способ затратный и ненадежный, так как срок брожения небольшой и готовить новые канистры с брагой дорого.

Естественные источники

Главным естественным источником углекислого газа для растений является воздух. Открывание форточек – это простейший способ подачи в нее углекислого газа. Ночное дыхание растений и выделение углекислого газа почвой также наполняет парник газом.

Растения получают углекислоту и из почвы, которая образуется в результате разложения содержащихся в ней органических веществ, дыхания корней и микроорганизмов. Но это всего лишь четверть от их суточной потребности.

Многих интересует вопрос можно ли устроить углекислый газ в теплице своими руками? Попробуем ответить на этот вопрос.

Генератор углекислого газа для теплиц своими руками – оправданно или нет?

Изготовление газогенератора своими руками возможно, но не рационально. Оно потребует не только больших финансовых вложений, но трудозатрат.

Кроме того, генератор со2 для теплиц требует наличия отдельного помещения, так как это устройство, выделяющее большое количество тепла, по сути, печь.

Гораздо проще и дешевле использовать имеющиеся технические, биологические или естественные источники углекислого газа.

Несколько правил подачи газа

  1. Усвоение СО2 растениями напрямую зависит от освещения. При искусственном освещении газ усваивается растениями лучше, чем при летнем естественном дневном свете. Это означает, что в зимний период подкормка газом должна быть меньше, чем летом.
  2. Время подачи газа растениям не менее важно, чем его количество. Первую подкормку в течение дня лучше производить утром, примерно через 2 часа после наступления светового дня. В это время растения лучше всего поглощают газ. Вторую подкормку делают вечером, за 2 часа до наступления темноты.
  3. У каждой культуры свой объем потребления углекислого газа. Поэтому обязательно интересуйтесь, сколько газа нужно томатам, перцам или цветам. Излишек газа может навредить растениям.

Знания – сила, чем лучше мы узнаем свои растения, тем с большей благодарностью они отдают нам свои плоды. Успехов и хороших урожаев. Ну а систему подачи углекислого газа в теплице выбирайте сами, в зависимости от своих возможностей и предпочтений.

>Полезное видео

Как выделить углекислый газ для теплицы в домашних условиях смотрите на видео ниже:

Необходимость выработки углекислоты

Достаточно часто собираются такие системы, которые способны доставлять углекислый газ в аквариумную воду. Часто они имеют множество применений, которые не ограничиваются этим. Они участвуют во многих процессах, например:

  • Выработка кислорода. Кроме питательных веществ, растения в процессе фотосинтеза могут снабжать воду этим веществом. Таким образом, рыбки, которые живут в аквариуме, будут нормально дышать и не умрут от нехватки кислорода.
  • Контроль уровня pH. Кислотность немного повышается, снижая тем самым его показатель. Это создаёт гораздо более приемлемые условия для нормального функционирования всех живых существ внутри.

Стоит отметить, что полностью перекладывать на растения работу по насыщению воды кислородом нельзя. Ночью, при отсутствии солнечного света, который нужен для образования глюкозы из углекислоты, процесс не запустится. Поэтому обязательно нужен аэратор — механизм, который сможет автоматически подавать воздух в воду, после чего какое-то количество кислорода будет в ней растворяться и не давать погибнуть живности внутри.

Кроме того, в темноте растения вместо выработки O2 его поглощают, вызывая в своих клетках обратную реакцию. При ней выделяется углекислый газ и вода, а значит, потребность в доставке дыхательной смеси возрастает ещё сильнее.

Допустимые уровни концентрации

Чтобы все процессы происходили правильно, нужно некоторое минимальное количество молекул углекислоты в воде. Несмотря на то, что жители аквариума в процессе жизнедеятельности тоже выделяют этот газ, его количества абсолютно недостаточно для протекания фотосинтеза.

Поэтому стоит знать, насколько большой должна быть концентрация газа, чтобы при этом не перенасытить воду им. Это не приведёт ни к чему хорошему, так как в ночное время может происходить кислородное голодание у живых существ.

Показатель зависит от объёма аквариума, но при этом подчиняется закону, при котором можно вывести его среднее значение. Оно равняется 2—10 миллиграммам на литр. Для стоячих водоёмов могут быть нормальными показатели и в 30, но всё слишком индивидуально.

В первую очередь нужно знать, в каких условиях жили те растения, которые были высажены. Если привычное для них состояние — лёгкое или почти отсутствующее течение, то можно добавлять больше углекислоты и не бояться перерасхода. Если же они появляются только в акваториях с ощутимым течением, то можно снизить дозу и от этого ничего страшного не случится.

Минимально допустимое значение находится на уровне 3—5 миллиграмм, поэтому нормальное для домашних условий содержание в 1 мг — недопустимо.

Нужно следить за уровнем СО2, так как перенасыщение может привести к кислородному голоданию аквариумных рыбок.

Способы доставки CO2

Для того чтобы выбрать оптимальный вариант, следует знать обо всех имеющихся. Каждый из них различается как своей сложностью, так и ценой за применение и последующую эксплуатацию установки. Если задача стоит сделать генератор CO2 для аквариума своими руками, не стоит надеяться на сильное удешевление процесса. Особенно если используется более надёжный, долговечный и автоматизированный способ.

Итак, подачу углекислого газа в аквариум можно проводить такими способами:

  • С помощью системы брожения. От владельца в этом случае понадобится только снабжать самодельную установку реагентами для беспрерывного выделения углекислоты.
  • Регулярным введением содержащих CO2 препаратов. Способ действенный, но требует построения графика и точного его соблюдения.
  • Подведение баллона с газом, находящимся под большим давлением. Если такое устройство будет снабжено автоматическим клапаном, участие человека сведётся к минимуму.
  • Использование газированной воды. Обычная бутылка, купленная в магазине, способна обеспечить надолго весь резервуар питательным веществом.

Последний способ, естественно, не претендует на большую эффективность, но несмотря на это, обычная бутылка воды — это довольно серьёзный источник углекислоты.

Обеспечить подачу СО2 можно реакцией брожения – экономный вариант для аквариумистов с небольшим бюджетом.

Использование брожения

Подача CO2 в аквариум с помощью этой реакции может помочь аквариумистам с ограниченным бюджетом, так как здесь не используются ни дорогие компоненты, ни сложные реагенты. Всё, что нужно — это собрать несколько составных частей:

  • Сахар — примерно 300 грамм.
  • Дрожжи — меньше грамма, лучше придерживаться соотношения 1:1000 и брать количество исходя из массы сахара. В этом случае их должно быть 0,3 грамма.
  • Вода — 1 литр, взбалтывать смесь не разрешается.
  • Бутылка пластиковая, объёмом от полутора литров.
  • Трубка достаточной длины.

Конструкция предельно проста — в крышечке от бутылки проделывается отверстие, в него вставляется трубка, другой конец которой опускается в воду. Через неё выделяющийся в результате реакции газ будет поступать в аквариум и насыщать его.

Если при этом бутылка со смесью будет нависать вертикально над аквариумом, то лучше приделать в систему дополнительный резервуар. Со временем в основной ёмкости образуется брага, которая может быть подхвачена углекислотой и отправлена в воду. Это недопустимо, так как растворение сахара только повредит обитателям. Лучше приделать в систему ещё одну ёмкость, в которую сначала будет попадать газ и возможные комки.

Однако нельзя абсолютно точно сказать, какое количество углекислоты попадает в аквариум: реакция просто протекает без малейшего контроля и может быть очень неравномерной из-за того, что сама смесь выделяет газ неоднородно. Кроме того, каждые две недели ёмкость придётся менять, так как именно через это время реакция полностью прекращается.

Применение специальных препаратов может быть эффективной заменой технике брожения.

Применение препаратов

Одним из самых эффективных реактивов можно назвать Tetra CO2 Plus, который легко растворяется в воде и распространяется в виде сильно насыщенного газом раствора. Одной упаковки при обычном использовании должно хватить на 100 применений в 20-литровом аквариуме, а это несколько лет непрерывного снабжения углекислым газом.

Подавать СО2 в аквариум с его помощью легко — достаточно вливать 2,5 миллилитра в воду раз в неделю. Постепенное высвобождение газа будет долго питать растения и поддерживать процесс фотосинтеза.

Преимущества:

  • Не нужно сооружать громоздких конструкций для функционирования.
  • Простота в эксплуатации.
  • Относительно длительный период работы средства.
  • Препятствие излишнему росту водорослей.

При этом растения насыщаются чистым углекислым газом, что положительно влияет на их динамику развития и роста. Они остаются здоровыми и активно синтезируют кислород в воде.

Баллон со сдавленным газом

Называются такие приборы по-разному, но суть их всегда одна — обеспечить как можно более плавное введение газа в толщу воды так, чтобы он не оказался сразу на поверхности. Для этого в них, как правило, установлены специальные ограничители потока, запускающиеся в момент включения. Несколько вариантов наименований:

  • флиппер;
  • диффузор:
  • реактор;
  • генератор.

Они зависят, в первую очередь, от производителя, который пытается привлечь внимание к своему продукту. Принцип действия же везде более или менее похож.

К баллону прикрепляются специальные датчики, которые измеряют различные показатели состава воды и на их основании отмеряют выпуск газа. Есть модели с автоматическими определителями уровня pH с помощью электрода, выведенного в воду. Если у выбранной модели отсутствуют такие модули, придётся постоянно самостоятельно следить за уровнем кислотности.

Кроме того, если слежка за pH не осуществляется, то эти баллоны контролируют подачу с помощью специального магнитного клапана, который по таймеру выпускает строго отмеренное количество CO2.

Если система только что была установлена, не стоит сразу открывать вентиль на полную. Это нужно делать плавно, чтобы не допустить повреждения тонкой мембраны, которая находится в редукторе.

При помощи специальных датчиков, прикрепленных к баллону, удобно следить за уровнем важных показателей.

Газированная вода

При использовании сверхмалых объёмов, такой способ является одним из самых эффективных и быстрых. Это так из-за того, что сама газировка уже является раствором в воде углекислоты. Сладкая вода по объективным причинам не подходит. В ней много ненужных веществ, которые могут попасть в воду и навредить. Поэтому лучше использовать марки без содержания сахаров, но и не имеющих в составе минералов.

Концентрация в закрытой бутылке стремится к 10 тысячам миллиграммов на литр. После открытия газ высвобождается и число стремительно уменьшается до показателя в 1500 мг/л, но даже этого более чем достаточно. На каждые 10 литров воды нужно будет добавлять всего 20 мл газировки.

Однако не стоит слишком сильно обнадёживаться. Главным недостатком, как и в случае с брагой из сахара и дрожжей, будет именно незнание точной концентрации газа. А это усложняет расчёт оптимальной дозировки.

Кроме того, как ни странно, именно это метод — самый дорогой из всех представленных. Цена в пересчёте на один грамм углекислоты выше в три раза по сравнению с ближайшим конкурентом. Поэтому стоит рассматривать газировку, как способ экстренно поднять концентрацию нужного показателя до приемлемого значения, когда другие по каким-то причинам недоступны.

Средства контроля и измерения

Чтобы эффективно насыщать воду углекислотой, нужно обязательно знать её текущий уровень. Имея эти данные, очень просто отрегулировать уровень газа и привести его в норму. Среди таких приборов есть:

  • Дропчекер. Это ёмкость, одна часть которой заполнена эталонным раствором для измерения карбонатной жёсткости, а вторая — таким же веществом, но для определения pH. Между ними всегда есть прослойка воздуха, которая не даёт смешиваться.
  • Счётчик пузырьков. Представляет собой прозрачную колбу, в которой находится вода. С обеих сторон она врезана в трубку, по которой идёт углекислый газ. От того, каким будет интервал вхождения в счётчик соседних пузырьков в воде, фактически зависит скорость подачи. Это самый наглядный пример того, как можно пронаблюдать степень насыщения.

Кроме этого, можно отдельно замерить все показатели, которые показывает дропчекер и воспользоваться таблицей, приводящей соотношение двух величин с концентрацией CO2. Есть и онлайн-калькуляторы, которые делают все расчёты автоматически. Единственное, что нужно учитывать — временной период, на который производится вычисление.

Есть ещё один метод, но он предназначен для очень опытных людей, поддерживающих свои аквариумы в нормальном состоянии. Это определение «на глаз», но при этом специалистом учитываются такие факторы, как освещённость толщи воды и скорость выделения пузырьков. Нужно также знать хотя бы примерно концентрацию газа в аквариуме на момент измерения.

Тогда по одному наблюдению за тем, как быстро выделяются пузырьки, специалист может сказать насколько сильно будет меняться содержание углекислоты за любой временной период. Опасность такого расчёта состоит в том, что знать какой объём биомассы в резервуаре невозможно, так как в нём постоянно идёт размножение. В результате можно сильно просчитаться, особенно если не знать примерное выделение газа каждым из видов флоры.

Значение углекислого газа (СО2) для растений

Углекислый газ является необходимой составляющей фотосинтеза растений (так же называемого усвоением углекислого газа). Фотосинтез – химический процесс, во время которого энергия света используется для того чтобы преобразовать СО2 и воду в сахар y зелёных растений. Цель каждого, кто занимается тепличным хозяйством – увеличить продуктивность растений и прирост масcы органического вещества. Углекислый газ усиливает рост растений и их мощь.

Вот только несколько примеров того, как углекислый газ увеличивает продуктивность растений: y цветущих растений наступает более раннее цветение, урожайность плодов повышaется, y роз реже происходит отмирание бутонов, растения дают более мощные побеги и более крyпные цветы. Именно поэтому СО2 можно назвать удобрением для растений. Дефицит СО2 является более серьёзной проблемой, чем дефицит элементов минерального питания – в среднем, растение синтeзирует из воды и углекислогo газа 94% массы сухого вещества, остальные 6%, растение получает из минеральных удобрений!

Подкормка растений углекислым газом в теплицах

Уровень СО2 в атмосферном воздухе – 370-400 ppm (частиц на миллион частиц). Все растения растут вполне хорошо при таком уровне углекислого газа, но если его уровень поднимается до 1000 ppm, то фотосинтез усиливается пропорционально росту СО2. У большинства растений при повышении уровня углекислого газа в теплице c 370 до 1000 ppm рост и урожайность могут увеличиться до 50%. И наоборот, снижение уровня СО2 ниже атмосферного уровня имеет очень сильный негативный эффект для роста растений.

Все наши статьи из рубрики: Теплицы и парники →→→

B некоторых случаях, особенно в теплицах с двойным остеклением, в которых воздухообмен c наружным воздухом сильно снижен, уровень углекислого газа в теплице может с легкостью опуститься ниже 370 ppm, что окажет очень негативное влияние на рост растений. Вентиляция в дневное время может приблизить уровень СО2 к атмосферному, но в теплице он все же никогда не сможет уже стать 370 ppm. Именно поэтому добавление в воздух теплицы СО2 искусственным путем представляется единственным выходом из положения.

Система подкормки растений углекислым газом (СО2) для промышленных теплиц. Система предназначена для выработки углекислого газа. Отбор СО2 осуществляется из трубопроводов на выходе дымовых газов из водогрейных котлов. Углекислый газ по трубопроводам распределяется по секциям теплиц. Контроль содержания СО2 в воздухе теплиц осуществляется автоматически приборами контроля.

То, до какой величины стоит поднять уровень СО2, зависит от многих факторов, от того, что выращивается в теплице. От освещенности, влажности, температуры, уровня вентиляции, от того, какую прибыль может дать повышение урожайности той или иной культуры. Для большинства растений в идеальных условиях точка насыщения достигается при уровне 1000-1300 ррm. Более низкий уровень (800-1000 ppm) рекомендуется для таких растений, как помидоры, огурцы, перец, салат латук.

Все наши статьи из рубрики: Теплицы и парники →→→

Для выращивания африканских фиалок и некоторых видов гербер рекомендуется даже ещё более низкий уровень (500-800 ppm). Повышение уровня СО2 в теплице выше атмосферного сокращает период роста на 5-10 % , улучшает качество урожая, увеличивает размер листьев и их толщину. У таких растений, как помидоры, огурцы, перец, повышение урожайности достигается за счет того, что у них образуется большее число плодов, которые растут быстрее.

Подкормка с использованием газогенераторов. Прямая газация осуществляется путем использования газогенераторов-пламенных горелок на природном газе, которые стационарно размещают на уровне шпалеры.

Типичная теплица высотой 2,4 метра имеет приблизительный объем 400 м3 при 100 м2 поверхности пола. Чтобы увеличить уровень СО2 с 300 до 1300 ppm потребуется дополнительно 1000 ppm или 0,1% СО2. Это потребует 0,4 м3 или 0,75 кг СО2 на каждые 100 м2 площади поверхности пола теплицы.

Применение сжиженного углекислого газа в баллонах является одним из простых, но дорогостоящих способов подкормки растений углекислым газом в теплице. Но данная технология считается наиболее совершенной.

СО2 стоит начинать добавлять ещё до рассвета, поскольку фотосинтез наиболее активно протекает именно в утренние часы. После достижения уровня СО2 = 1300 ppm, он должен поддерживаться, так как уровень СО2 в теплице снижается за счет фотосинтеза и вентиляции. Поскольку обычно фотосинтeз происходит только во время светового дня, в ночные часы добавление СО2 не требуется (за исключением технологий, предусматривающих досвечивание растений в ночные часы).

Не допускайте, чтобы в теплице был чрезмерно высокий уровень СО2. Слишком высокий уровень углекислого газа растениям не полезен.

Увеличение концентрации углекислого газа по сравнению с естественным уровнем повышает урожай овощных культур на 20-40% в зависимости от окружающих условий.

Например, подкормка салата углекислым газом обеспечивает прибавку урожая на 25-40% и ускоряет созревание на 10-15 дней. Таким образом, ничто не мешает Вам превращать углекислый газ в превосходные овощи.

Все наши статьи из рубрики: Теплицы и парники →→→

Cистемы СО2 в аквариуме или что у кабомбы на обед?

Если спросить почти у любого человека, чем питаются зелёные растения, то как правило можно услышать про удобрения – азотные, фосфорные и калийные. Школьная программа почему-то крепко вбила это знание в наши головы. Несколько реже звучит ответ: «Солнечным светом и водой». Зато на вопрос о том, чем растения дышат, большинство отвечает: «Углекислотой. А выдыхают полезный кислород». Разумеется, все эти ответы неверны. На самом деле всё обстоит совсем по-другому…

Как и почти все живые существа на планете Земля (за исключением анаэробных бактерий и обитателей глубоководных серных вулканов – «чёрных курильщиков»), зелёные растения дышат кислородом. А вот углекислый газ они вовсе не вдыхают, а… едят! Именно из того углерода, который входит в его состав, растения строят все свои органы и ткани, он служит для них и топливом и строительным материалом. Поэтому одним из важнейших факторов роста зелёных растений служит содержание в окружающей среде (в воздухе для сухопутных растений и в воде для водных) углекислого газа, CO2. О нём мы сегодня и поговорим…

Маленький ликбез. О фотосинтезе.

Как известно, почти все вещества, из которых состоит любой живой организм (белки, жиры, углеводы, нуклеиновые кислоты, и т.д.) состоят на 99% всего из трёх химических элементов: углерода, кислорода и водорода. Оставшийся 1% составляют макроэлементы: азот, фосфор и калий, а также так называемые «микроэлементы» (прежде всего – железо, кальций, магний, цинк, в меньших количествах другие, — почти половина таблицы Менделеева). Зелёные растения обладают удивительным механизмом, позволяющим им самостоятельно синтезировать органические вещества из углекислого газа и воды. Под воздействием солнечного света особое вещество, содержащееся в их клетках – зелёный пигмент хлорофилл — производит из CO2 и H2O простой сахар – глюкозу, а уже из него, с помощью макро- и микроэлементов ферменты умеют делать белки, клетчатку, крахмал и всё остальное, что нужно для строительства растительного организма. В процессе этой реакции в окружающую среду выделяется кислород. Небольшую часть этого кислорода растения используют для дыхания, а остальное – выбрасывают в воздух или в воду.

Итак, для нормального роста и развития высших зелёных растений необходимо достаточное количество:

  • углекислого газа;
  • воды;
  • солнечного света;
  • макроэлементов (азот, фосфор, калий);
  • микроэлементов (железо, кальций, магний, цинк, и др.)

Все эти компоненты должны быть сбалансированы друг с другом. Дефицит или избыток любого из них немедленно даёт преимущества не высшим растениям, а вредным паразитическим водорослям (зелёным нитчатым, багрянкам, диатомовым и другим), создающим в аквариуме проблемы. Эти организмы, которые старше цветковых растений на миллионы лет, приспособлены к любым условиям. Например, если в вашем аквариуме много света и мало СО2 – вы даёте преимущество нитчатым водорослям, способным быстро заполнить ваш аквариум спутанными волокнами тины. Что же делать, чтобы этого не произошло?

В химии и биохимии есть такое понятие – «лимитирующий фактор реакции». Что это такое – хорошо понятно тем, кто часто ходит в походы: скорость движения группы всегда равна скорости движения самого медленного из её участников, который и является «лимитирующим фактором». Так же точно и в росте аквариумных растений. Воды им хватает в избытке (они в ней живут!), макро- и микроэлементы поступают из грунта, из воды и с внесением удобрений, сделать хорошее яркое освещение – тоже не проблема, а вот с CO2 периодически возникают сложности. Он-то и становится в аквариуме «лимитирующим фактором». Почему? Почему проблемы с углекислотой возникают в аквариуме, но не возникают в природе? Давайте разберёмся…

Почему CO2 в аквариуме – дефицит?

Посмотрите на биотоп любого природного пресного водоёма. Водных растений там обычно немного, и сидят они редко, а дно покрыто органическими отложениями, в которых в изобилии живут разнообразные микро- и макроорганизмы, в основном беспозвоночные. Да и рыбы изрядно, и головастиков… И все они – от микроорганизмов, перерабатывающих донные отложения, до рыбы и лягушек, выделяют в воду значительные количества СО2. Иное дело – типичный растительный аквариум, который, как правило, густо засажен растениями, а рыбы в нём мало, и она невелика (ибо большинство крупных рыб портят растения). Обычное население наших аквариумов – мелкая стайная харацинка и гуппи с пецилиями, которые в силу малого размера и медленного обмена веществ углекислого газа выделяют совсем мало.

А вот света в наших обычных аквариумах в достатке, азота с фосфором – обычно тоже хватает. Вот и получается, что тем самым «лимитирующим фактором» становится СО2. Часть растений при его дефиците просто угнетаются в росте и в конце концов погибает, а другие – приспособились сами добывать себе СО2 из минеральных веществ, разлагая растворённые в любой воде гидрокарбонаты. При этом в качестве «побочного продукта» образуются нерастворимые соли кальция, выпадающие на листьях таких растений в виде грубой некрасивой корки (на которой быстро поселяются одноклеточные диатомовые водоросли). Такой фокус умеют проделывать элодеи, анубиасы, роголистники и некоторые другие виды, живущие в природе в стоячих водоёмах и сталкивающиеся там с периодическим дефицитом углекислоты. Так что если мы хотим, чтобы растения выглядели так, как на картинках в интернете, а не являли из себя тощие унылые и понурые хвостики, покрытые известковой коркой и водорослевыми обрастаниями, то волей-неволей придётся подумать о добавлении в аквариум углекислого газа.

Если же вы привыкли более дотошно подходить к таким проблемам, и мои краткие пояснения вас не убедили — советую обратиться к научной статье вот по этой ссылке, в которой всё это подробно разъяснено с точки зрения химии и биохимии:

  • Углекислый газ и карбонатная система воды. Часть 1.
  • Углекислый газ и карбонатная система воды. Часть 2.

Мы же перейдём к практике. Но прежде — маленькое предупреждение:

Не переборщи!

Безусловно, СО2, подаваемый в растительный аквариум в разумных количествах, стимулирует рост и развитие растений. Но ключевое слово здесь – «в разумных»! Прежде, чем переходить к описанию систем подачи углекислоты, хочется напомнить, что по неосторожности можно, как известно, сломать и такие части тела, которые к переломам не слишком предрасположены 😉 . И если избыточной аэрацией, к примеру, навредить аквариуму сложно, то избыток СО2 запросто способен потравить ваших рыб и креветок, поэтому контроль за его концентрацией необходим. И первое, что необходимо приобрести прежде, чем вы начнёте кормить свои растения углекислым газом – это индикатор его содержания. Оптимальная концентрация СО2 в аквариуме – 5-20 мг/л. Содержание углекислоты менее 3 мг/л грозит растениям голодом, а 30 мг/л – концентрация, опасная для рыб и беспозвоночных.

Карбонатная жёсткость, кислотность воды и концентрация СО2 — это взаимозависимые параметры, поэтому зная два из них можно определить третий. Более точно понять, какова концентрация СО2 в вашем аквариуме, вам помогут индикаторы карбонатной жесткости (kH) и кислотности (pH) воды, а также вот такая таблица:

С помощью счётчика пузырьков необходимо отрегулировать подачу углекислого газа из вашей системы в аквариум так, чтобы его содержание находилось в «зелёной» области. Если ваш аквариум стабилен, то обычно бывает достаточно раз в месяц-два отрегулировать по индикатору, запомнить скорость подачи газа в пузырьках в минуту, и в дальнейшем просто поддерживать подачу с этой постоянной скоростью. На ночь подачу СО2 нужно отключать (вручную или автоматическим клапаном), иначе ночью pH воды будет сильно понижаться.

Можно упростить процедуру, приобретя стеклянный индикатор содержания СО2 в воде, так называемый «дроп-чекер». Цвет жидкости в нём изменяется в зависимости от концентрации углекислого газа, и означает то же самое, что и цвета в табличке на рисунке: жёлтый – много СО2, голубой – мало, а зелёный – в самый раз. До жёлтой окраски лучше не доводить никогда: обычно жидкость в дроп-чекере желтеет уже тогда, когда концентрация превысила опасный для рыб уровень. Учтите ещё, что «дроп-чекер» — прибор довольно «тормозной», и реагирует на изменения не сразу, поэтому после изменения скорости подачи газа надо подождать полчасика, прежде чем его показания начнут соответствовать реальности. Индикаторная жидкость в дроп-чекерах работает до трёх месяцев, потом она бледнеет, мутнеет, и требует замены. Кстати, продающиеся в зоомагазинах жидкости для дроп-чекеров разных брендов вполне взаимозаменяемы (их состав совершенно одинаков).

Многие литературные источники советуют при обычной в наших аквариумах карбонатной жесткости около kH=4 устанавливать скорость подачи углекислого газа порядка 5 пузырьков в минуту на каждые 50 литров объёма аквариума. Понятно, что эта цифра приблизительна, но регулировать подачу по индикаторам лучше, начав именно с неё. иначе опять-таки есть риск «переборщить».

Дроп-чекеры:

Генератор брожения


Склянка Дрекселя

Самый старый из существующих в аквариумистике способов получения углекислого газа – метод брожения, основанный на реакции сахара и дрожжей. Принцип известен и понятен всем: дрожжи в водном растворе поедают сахар, превращая его в спирт и углекислый газ. Если проводить процесс в герметичной ёмкости, то через трубочку из неё полученный СО2 можно подавать в аквариум. Преимущества дрожжевого метода понятны – «дёшево и сердито»: сахар и дрожжи стоят копейки, замешать бражку умеет каждый, и, казалось бы, никаких затрат. Но всё не так просто!

Во-первых, дрожжи поедают сахар достаточно быстро, и СО2 нормально выделяется только в первые пару дней. Потом в растворе заканчивается сахар, а сами дрожжи отравляются образующимся спиртом и погибают. Для того, чтобы замедлить процесс, аквариумисты придумали множество различных ухищрений: от банального «смешать, но не размешивать» (чтобы сахар растворялся постепенно) до добавления соды и разного рода загустителей (желатина, агара, крахмала), затрудняющих дрожжевым клеткам путь к вожделенному сахару. Но даже самая продвинутая бродилка «пузыряет» СО2 не больше двух-трех недель, после чего её всё равно надо разбирать, сливать дурнопахнущее содержимое и заправлять по новой.

Во-вторых в период интенсивного брожения в реакторе образуется органическая пена, которая может, попав в аквариум, вызвать в нём «биохимическую катастрофу», поэтому углекислый газ из такого аппарата нужно обязательно пропускать через «склянку Дрекселя», чтобы пена, капли, и прочее остались в ней и не дошли до аквариума. Лучше всего на дно такой склянки налить немножко раствора питьевой соды, чтобы СО2 булькал сквозь него, очищаясь не только от пены, но и от паров спирта, уксусной и других кислот, образующихся при брожении.

В-третьих, если пропустить окончание брожения, то избыточное давление газа в реакторе может смениться недостаточным, и вместо подачи газа в аквариум может начать поступать вода из аквариума в реактор. А значит – нужен обратный клапан, перекрывающий трубку в такой ситуации.

Наконец, в-четвёртых скорость выделения газа при брожении очень нестабильна, зависит от температуры окружающей среды, сорта и качества дрожжей и множества других факторов, и её придётся постоянно контролировать по счетчику пузырьков, в начале процесса ограничивая поступление газа в аквариум, а в конце – открывая на полную.

Справедливости ради следует сказать, что поскольку среди аквариумистов довольно много поклонников «бродильного» метода, считающегося экологически чистым и природно-естественным, то некоторые известные производители аквариумного оборудования, идя навстречу их убеждениям, выпускают промышленные наборы для получения СО2 брожением. Как правило, в состав этих наборов входит сменная бутыль с «биогелем» (раствором сахара и специального загустителя) и специальные «медленные» дрожжи, а также все необходимые аксессуары. Содержимое бутыли работает обычно около месяца, после чего придётся купить новую бутыль.

Пример такого набора:

  • Система СО2 в аквариум Dennerle BIO 120
  • Система СО2 в аквариум Dennerle BIO 60
  • Система CO2 Dennerle Einweg 160 Primus
  • Система CO2 JBL ProFlora bio80 eco 2 с пополняемым баллоном для аквариумов от 12 до 80 л
  • Система CO2 JBL ProFlora bio80 eco 2 с пополняемым баллоном и мини-CO2-реактором для аквариумов от 12 до 80 л
  • Установка для подачи CO2 Dennerle Nano Bio

Сменная бутыль:

  • Баллон с гелем Dennerle запасной

В общем, простота и дешевизна «бражки» на поверку оказываются кажущимися, а забот она требует постоянных. Какие же ещё варианты существуют?

Химический способ


Аппарат Киппа

Второй способ получения СО2 – гораздо менее распространён в аквариумистике. Он основан на химической реакции между гидрокарбонатами или карбонатами (питьевая сода, известь, поташ, мел, мрамор, яичная скорлупа, доломит, и т.д.) и кислотами (уксусной, соляной, лимонной, и др.), при которой интенсивно выделяется углекислый газ. Для того, чтобы контролировать скорость реакции и объём выделяемого СО2, процесс проводят обычно в довольно сложном агрегате, называемом «аппарат Киппа» (его классический лабораторный вариант показан на рисунке ), в котором можно тонко регулировать реакцию между твёрдым карбонатом и жидкой кислотой. Преимущества метода – дешевизна исходных компонентов. Недостатки – в общем-то те же самые, что и у метода брожения: сложность регулировки процесса, необходимость периодически менять реактивы (известь и кислота расходуются), а также нужность тех же самых защитных приспособлений – склянки Дрекселя и обратного клапана – т.к. химический СО2 тоже способен уносить с собой следы кислоты и прочих вредных компонентов, а попадание аквариумной воды обратным ходом в аппарат способно его испортить.

Экзотические способы

На них мы подробно останавливаться не будем, скажем лишь, что они существуют. Это получение СО2 с помощью электролизёра, порошкового генератора, TPV-аппарата, гидрокарбонатного термореактора, и прочих странных приспособлений, применение которых в бытовой аквариумистике не только сложно, но и, при отсутствии навыка, может быть опасно. К подобной же экзотике следует отнести, пожалуй, и испарители «сухого льда» (твёрдой углекислоты), способные в неумелых руках привести в взрыву и обморожению. Из промышленной экзотики можно отметить выпускаемые некоторыми фирмами таблетки для насыщения воды углекислотой. Состоят такие таблетки, как правило, из карбоната кальция и сухой органической кислоты, а также замедлителей и минеральных добавок. Будучи помещённой в аквариум (или в специальный приборчик — карбонатор, устанавливаемый на дно), такие таблетки постепенно растворяются, выделяя в воду СО2. Однако, контролировать этот процесс невозможно, и их эффективность вызывает обоснованные сомнения.

Пример таких таблеток:

  • Таблетки для насыщения воды углекислым газом Hobby Sanoplant CO2 100 таблеток
  • Таблетки для насыщения воды углекислым газом Hobby Sanoplant CO2 20 таблеток

Что же остаётся? Не самое дешевое, зато самое современное и надёжное решение: подавать СО2 из баллона…

Баллонные системы

Сегодня самыми распространёнными и надёжными являются баллонные системы, подающие СО2 в аквариум из одноразовых или многоразовых (заправляемых) газовых баллонов.

Одноразовые баллончики, похожие на аэрозольные, объёмом от 100 до 500 мл – хорошее решение для маленьких аквариумов. Из такого баллончика раз в день, утром, наполняется углекислым газом реактор типа «колокол» или «перевернутый стаканчик» (о типах реакторов мы расскажем чуть ниже) и в течение дня этот объём постепенно растворяется и используется растениями. Газа в таком баллончике хватает примерно на месяц-два, в зависимости от интенсивности использования.

  • Диффузионный набор Tetra CO2-Optimat

Баллончик для него:

  • Баллон Tetra CO2-Depot

Для совсем маленьких нано-аквариумов выпускаются СО2-системы со сменными баллончиками, похожими на баллончики для старо-советских сифонов с газировкой или для пневматических пистолетов, например, такие:

Системы под «сифонные» баллончики:

  • Набор СО2 Hagen
  • Комплект подачи CO2 Dennerle Nano Set

Баллончики для них:

  • Баллон CO2 Hagen (3 шт)
  • Баллон сменный CO2 Dennerle (3 шт)

Гораздо более распространены многоразовые заправляемые баллоны с редуктором. В таких баллонах ёмкостью от 1 до 200 литров СО2 находится в виде жидкости под давлением. Для подачи из них газа в аквариум нужен двухступенчатый редуктор, понижающий давление до разумного. Обычно он снабжён двумя манометрами, один из которых показывает давление в балоне (и позволяет контролировать, сколько ещё углекислоты в нём осталось) а второй – давление на выходе.

Пример редуктора:

  • Редуктор CO2 Sera Flore CO2

Регулируется подача газа игольчатым клапаном (краном тонкой регулировки) и специальным электромагнитным клапаном, обычно входящим в состав аквариумных баллонных СО2-комплектов — они позволяют автоматизировать регулировку подачи газа, устанавливать суточные режимы и отключать его подачу на ночь (когда его всё равно некому потреблять). Обязательно понадобится вам счётчик пузырьков (для чего – мы уже рассказывали выше) и обратный клапан, предотвращающий засасывание аквариумной воды в редуктор (который от воды может легко выйти из строя).

Игольчатые клапаны:

  • Вентиль JBL ProSilent Control высокоточный регулируемый
  • Клапан игольчатый СО2 Dennerle двойной

Электромагнитные клапаны:

  • Клапан электромагнитный ADA EL-Valve
  • Клапан электромагнитный JBL 12В СО2
  • Клапан электромагнитный Sera

Счетчики пузырьков:

  • Счетчик пузырьков ADA СО2
  • Счетчик пузырьков CO2 Dennerle
  • Счетчик пузырьков FERPLAST
  • Счетчик пузырьков CO2 Flore

Обратные клапаны:

  • Обратный клапан JBL для CO2
  • Обратный клапан CO2 Dennerle Prof
  • Обратный клапан CO2 Dennerle

CO2-реакторы, распылители и диффузоры

Итак, способ генерации СО2 выбран (надеюсь, что это всё-таки баллон, а не «бродилка»!), аксессуары подобраны, и остаётся последний штрих — как подавать СО2 в аквариум, чтобы он растворялся в воде, а не выветривался из неё в помещение? Разумеется, обычные распылители, с помощью которых мы аэрируем воду — категорически не подходят! С их помощью мы будем насыщать газом не аквариум, а помещение, в котором он стоит. Нужны специальные приспособления, которые в аквариумистике называются собирательным термином «СО2-реакторы». Начнём с простейших.

«Колокол» или «перевёрнутый стаканчик». Собственно, что это такое — понятно из названия. Обычно это небольшая пластмассовая или стеклянная ёмкость, которая заполняется водой, помещается в аквариум открытой стороной вниз (прикрепляем к стенке с помощью присоски) и заполняется газом из баллона. В течение светового дня газ из стаканчика постепенно растворяется, расходуется, а вечером стаканчик снова наполняется водой, с тем чтобы с утра операцию повторить. Такой СО2-реактор годится только для самых маленьких нано-аквариумов, т.к. эффективность его невелика. основное достоинство «колокола» — с его помощью невозможно «переборщить» и создать в ёмкости концентрацию СО2, опасную для рыб.

Деревянный диффузор — распылитель древесины лиственных пород (используется обычно рябина, береза, ива или липа). Такой диффузор (в отличие от обычного распылителя для подачи воздуха) создаёт мельчайшие пузырьки газа, облегчающие его растворение. Преимуществом таких распылителей является простота в сочетании со значительной эффективностью. Недостатки — необходимость подачи газа под довольно высоким давлением (иначе такую палочку трудно «продавить»), переменная производительность (древесина постепенно разбухает и портится) и недолговечность (замена нужна каждые 2-3 месяца). Такой диффузор можно сделать самому, а можно купить готовый:

Стеклокерамические и мембранные диффузоры

Это самый распространённый и разнообразный тип реакторов для растворения СО2. Объединяет их все принцип действия: газ подаётся в расположенную под водой стеклянную ёмкость, верхняя часть которой закрыта полупроницаемой микропористым стеклянным диском, керамической пластиной или пластиковой мембраной. В её поверхности имеются мельчайшие отверстия, сквозь которые газ с трудом медленно продавливается в воду в виде мельчайших пузырьков. Давление подачи регулируется таким образом, чтобы пузырьков газа было мало (а не так, как на рисунке слева!), и они бы не долетали до поверхности воды, растворяясь полностью в её толще.

Диффузоры:

Ещё один тип реакторов — это так называемые «пузырьковые лесенки». Это стеклянные или пластиковые прозрачные лабиринты, в которых каждый пузырёк СО2, запущенный снизу, постепенно поднимается по ступенькам или по спирали, медленно проходя сквозь толщу воды и растворяясь в ней по дороге. При правильной настройке «лесенки» ни один пузырёк не должен доходить до последней её ступеньки, или же доходить уже таким маленьким, что не имеет шансов попасть на поверхность воды. Штука эта может и громоздкая, но в декорировании обычно не нуждается, т.к. само по себе наблюдение за поднимающимися по лабиринту пузырьками — зрелище поистине медитативное! 🙂 Лесенок таких выпускается великое множество, разных форм и размеров. Их преимущество — не только в завораживающем медленном танце пузырьков, но и в том, что для них (в отличие от деревянных и мембранных диффузоров) не нужно избыточное давление газа, что позволяет использовать их вместе с генераторами «бражного» типа. Не нужен им и отдельный счётчик пузырьков — их легко посчитать с секундомером на входе в реактор.

Видео 1

Видео 2

Реакторы типа «лесенка» или «спираль»:

  • Система для подачи CO2 Hagen
  • Реактор CO2 Dennerle Cyclo Turbo XL
  • Реактор CO2 Dennerle Micro-Flipper
  • Реактор CO2 Dennerle Maxi-Flipper
  • Реактор CO2 Aqua Medic 500

Наиболее технически продвинутые реакторы подачи СО2 — это активные помпы. Конструкции таких реакторов очень разнообразны, каждый производитель патентует свои технические решения, но принцип их работы един: навстречу пузырькам газа, бегущим по трубке или лесенке, с помощью помпы подаётся противоток воды, тормозящий их движение и ускоряющий растворение. Преимущество таких реакторов — максимальная эффективность (весь СО2 переходит в раствор и не выветривается) и отсутствие потребности в избыточном давлении газа. Недостаток — пожалуй, излишняя техническая сложность, избыточная для выполняемой функции. Тем не менее, самые современные системы подачи СО2 от лучших мировых брендов комплектуются именно активными помповыми реакторами.

Примеры активных помповых реакторов от нескольких производителей:

  • Реактор CO2 Aqua Medic с прокачивающей помпой
  • Реактор активный Sera Flora CO2 1000
  • Помпа Aqua Medic AQ 400 для Реактора CO2

Товары, упомянутые в статье, вы можете купить в супермаркетах Аква Лого. Цены и наличие товара вы можете посмотреть в прайс-листе.

В заключение, хочу порекомендовать всем заинтересовавшимся темой подачи СО2 в растительный аквариум, классическую статью шведских аквариумистов, коротко и понятно объясняющую научные основы этого процесса:

Со и со2

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *